E-NOVEL PRODUKSI FILM PATI: KARAKTERISASI PRODUKSI FILM PATI DARI LIMA JENIS PATI BERBEDA
Sari
The process of producing starch film using the casting method required a significant amount of time to obtain the desired film product. Therefore, this study was conducted to reduce the production time required for the starch film. The study used five varieties of starch: bengkoang starch, talas starch, glutinous rice flour, wheat flour, and MOCAF flour. The process involved homogenizing the starch and glycerol mixture utilizing a stirrer, followed by heating using a microwave and a compression process to accelerate the evaporation of water in the starch film. For the final drying stage, samples that had gone through this process were dried using a cabinet dryer. The result showed that the developed method of starch film requires only 60 minutes of the time needed compared to conventional casting method, which usually takes 5-48 hours. Furthermore, it was observed that starch film production using glutinous rice flour resulted in the highest tensile strength.
Teks Lengkap:
PDFReferensi
Abral, H., Basri, A., Muhammad, F., Fernando, Y., Hafizulhaq, F., Mahardika, M., Sugiarti, E., Sapuan, S. M., Ilyas, R. A., & Stephane, I. (2019). A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids, 93(January), 276–283. https://doi.org/10.1016/j.foodhyd.2019.02.012
Arifin, U. F., Adetya, N. P., Pambudi, W., & Ratnaningsih, W. (2022). Quality Evaluation of Bioplastic from Glutinous Rice Starch Reinforced with Bamboo Leaf Powder. CHEESA: Chemical Engineering Research Articles, 5(2), 82. https://doi.org/10.25273/cheesa.v5i2.14235.82-91
Arıkan, E. B., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal, 03(02), 93–97. https://doi.org/10.35860/iarej.420633
Asrofi, M., Sapuan, S. M., Ilyas, R. A., & Ramesh, M. (2020a). Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type). Materials Today: Proceedings, 46, 1626–1630. https://doi.org/10.1016/j.matpr.2020.07.254
Asrofi, M., Sapuan, S. M., Ilyas, R. A., & Ramesh, M. (2020b). Materials Today : Proceedings Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber : Effect of time duration of ultrasonication. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.07.254
Donmez, D., Pinho, L., Patel, B., Desam, P., & Campanella, O. H. (2021). Characterization of starch–water interactions and their effects on two key functional properties: starch gelatinization and retrogradation. Current Opinion in Food Science, 39, 103–109. https://doi.org/10.1016/j.cofs.2020.12.018
Hazrati, K. Z., Sapuan, S. M., Zuhri, M. Y. M., & Jumaidin, R. (2021). Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers. Journal of Materials Research and Technology, 15, 1342–1355. https://doi.org/10.1016/j.jmrt.2021.09.003
Ibrahim, M. I. J., Sapuan, S. M., Zainudin, E. S., & Zuhri, M. Y. M. (2019). Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers. International Journal of Food Properties, 22(1), 925–941. https://doi.org/10.1080/10942912.2019.1618324
Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2022). Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties. Polymers, 14(3), 1–19. https://doi.org/10.3390/polym14030514
Liu, Y., Liu, M., Zhang, L., Cao, W., Wang, H., Chen, G., & Wang, S. (2022). Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin. Food Hydrocolloids, 130(March), 107690. https://doi.org/10.1016/j.foodhyd.2022.107690
Lusiana, S. W., Putri, D., Nurazizah, I. Z., & Bahruddin. (2019). Bioplastic Properties of Sago-PVA Starch with Glycerol and Sorbitol Plasticizers. Journal of Physics: Conference Series, 1351(1). https://doi.org/10.1088/1742-6596/1351/1/012102
Mahardika, M., Abral, H., Kasim, A., Arief, S., Hafizulhaq, F., & Asrofi, M. (2019). Properties of cellulose nanofiber/bengkoang starch bionanocomposites: Effect of fiber loading. Lwt, 116(August). https://doi.org/10.1016/j.lwt.2019.108554
Mustafa, P., Niazi, M. B. K., Jahan, Z., Samin, G., Hussain, A., Ahmed, T., & Naqvi, S. R. (2020). PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. Journal of Food Safety, 40(1). https://doi.org/10.1111/jfs.12725
Nandiyanto, A. B. D., Fiandini, M., Ragadhita, R., Sukmafitri, A., Salam, H., & Triawan, F. (2020). Mechanical and biodegradation properties of cornstarch-based bioplastic material. Materials Physics and Mechanics, 44(3), 380–391. https://doi.org/10.18720/MPM.4432020_9
Oluwasina, O. O., Akinyele, B. P., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2021). Evaluation of the effects of additives on the properties of starch-based bioplastic film. SN Applied Sciences, 3(4), 1–12. https://doi.org/10.1007/s42452-021-04433-7
Perez-Puyana, V., Cuartero, P., Jiménez-Rosado, M., Martínez, I., & Romero, A. (2022). Physical crosslinking of pea protein-based bioplastics: Effect of heat and UV treatments. Food Packaging and Shelf Life, 32(March). https://doi.org/10.1016/j.fpsl.2022.100836
Puglia, D., Dominici, F., Kenny, J. M., Santulli, C., Governatori, C., Tosti, G., & Benincasa, P. (2016). Tensile Behavior of Thermoplastic Films from Wheat Flours as Function of Raw Material Baking Properties. Journal of Polymers and the Environment, 24(1), 37–47. https://doi.org/10.1007/s10924-015-0745-4
Pulungan, M. H., Kapita, R. A. D., & Dewi, I. A. (2020). Optimisation on the production of biodegradable plastic from starch and cassava peel flour using response surface methodology. IOP Conference Series: Earth and Environmental Science, 475(1). https://doi.org/10.1088/1755-1315/475/1/012019
Rostini, I., Intan Pratama, R., & Rochima, E. (2019). Characterization of Bioplastic Packaging from Tapioca Flour Modified with the Addition of Chitosan and Fish Bone Gelatin. World Scientific News , 135(September), 85–98. www.worldscientificnews.com
Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117(October 2020), 106719. https://doi.org/10.1016/j.foodhyd.2021.106719
Shanmathy, M., Mohanta, M., & Thirugnanam, A. (2021). Development of biodegradable bioplastic films from Taro starch reinforced with bentonite. Carbohydrate Polymer Technologies and Applications, 2(November), 100173. https://doi.org/10.1016/j.carpta.2021.100173
Sudhakar, M. P., Magesh Peter, D., & Dharani, G. (2021). Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research, 28(26), 33899–33913. https://doi.org/10.1007/s11356-020-10010-z
Syafri, E., Kasim, A., Abral, H., & Asben, A. (2017). Effect of Precipitated Calcium Carbonate on Physical, Mechanical and Thermal Properties of Cassava Starch Bioplastic Composites. International Journal on Advanced Science Engineering Information Technology, 7, 1951–1956.
Syafri, E., Kasim, A., Abral, H., Tj, G., Sanjay, M. R., & Sari, N. H. (2018). Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2018.08.134
Syamani, F. A., Kusumaningrum, W. B., Akbar, F., Ismadi, Widyaningrum, B. A., & Pramasari, D. A. (2020). Characteristics of bioplastic made from modified cassava starch with addition of polyvinyl alcohol. IOP Conference Series: Earth and Environmental Science, 591(1). https://doi.org/10.1088/1755-1315/591/1/012016
Wang, B., Sui, J., Yu, B., Yuan, C., Guo, L., Abd El-Aty, A. M., & Cui, B. (2021). Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydrate Polymers, 254(August 2020), 117314. https://doi.org/10.1016/j.carbpol.2020.117314
Wang, B., Yan, S., Qiu, L., Gao, W., Kang, X., Yu, B., Liu, P., Cui, B., & Abd El-Aty, A. M. (2022). Antimicrobial Activity, Microstructure, Mechanical, and Barrier Properties of Cassava Starch Composite Films Supplemented With Geranium Essential Oil. Frontiers in Nutrition, 9(May), 1–8. https://doi.org/10.3389/fnut.2022.882742
Wigati, L. P., Wardana, A. A., Tanaka, F., & Tanaka, F. (2022). Edible film of native jicama starch, agarwood Aetoxylon Bouya essential oil and calcium propionate: Processing, mechanical, thermal properties and structure. International Journal of Biological Macromolecules, 209(PA), 597–607. https://doi.org/10.1016/j.ijbiomac.2022.04.021
Xu, J., Sagnelli, D., Faisal, M., Perzon, A., Taresco, V., Mais, M., Giosafatto, C. V. L., Hebelstrup, K. H., Ulvskov, P., Jørgensen, B., Chen, L., Howdle, S. M., & Blennow, A. (2021). Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers, 253(October 2020). https://doi.org/10.1016/j.carbpol.2020.117277
Yamada, M., Morimitsu, S., Hosono, E., & Yamada, T. (2020). Preparation of bioplastic using soy protein. International Journal of Biological Macromolecules, 149, 1077–1083. https://doi.org/10.1016/j.ijbiomac.2020.02.025
Zhang, C. wei, Nair, S. S., Chen, H., Yan, N., Farnood, R., & Li, F. yi. (2020). Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Carbohydrate Polymers, 230(July 2019), 115626. https://doi.org/10.1016/j.carbpol.2019.115626
Zoungranan, Y., Lynda, E., Dobi-brice, K. K., Tchirioua, E., Bakary, C., & Daniel, D. (2020). Journal of Environmental Chemical Engineering Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. Journal of Environmental Chemical Engineering, 8(5), 104396. https://doi.org/10.1016/j.jece.2020.104396
Refbacks
- Saat ini tidak ada refbacks.