SIFAT FISIK DAN MEKANIK KEMASAN TABLEWARE DARI KOMPOSIT AMPAS TEH HITAM DAN TEPUNG TAPIOKA
Sari
Sumber serat dari limbah yang ramah lingkungan dan mudah didapatkan seperti serat ampas teh hitam dapat bermanfaat dalam sebagai bahan alternatif kemasan plastik non-biodegradable. Ampas teh hitam berperan sebagai pengisi dalam matriks tepung tapioka untuk membuat tableware dengan menggunakan alat compression molding. Faktor penting yang harus diperhatikan adalah penentuan ukuran partikel serat yang sesuai dapat meningkatkan kualitas komposit. Dalam penelitian ini digunakan empat rasio massa ampas teh hitam : pati tapioka (30:70, 40:60, 50:50, 60:40) dan tiga ukuran partikel (400-250 μm, 250-125 μm, <125 μm). Tableware diuji karakteristiknya meliputi sifat fisik (morfologi, ketebalan, densitas, penyerapan air) dan mekanik (kuat tarik, kuat fleksural). Hasil penelitian menunjukkan peningkatan serat dan pengecilan ukuran partikel ampas teh dapat meningkatkan sifat fisik dan mekanik tableware yang dihasilkan. Rasio 50:50 (50% ampas teh) dan ukuran partikel <125 μm memberikan morfologi yang baik, ketebalan dan kuat tarik yang tinggi, sedangkan rasio 60:40 (60% ampas teh) dan ukuran partikel 250-125 μm memberikan densitas dan kuat fleksural yang rendah, dan penyerapan air yang rendah.
Kata kunci—ampas teh hitam, ukuran partikel serat, tepung tapioka, tableware
Kata Kunci
Teks Lengkap:
PDFReferensi
Abbass, O. A., Salih, A. I., dan al Hurmuzy, O. M. 2020. Study of the mechanical and physical properties of bio-composite material based on wheat starch and wheat straw fibers. IOP Conference Series: Materials Science and Engineering. 742: 1-12. https://doi.org/10.1088/1757-899X/745/1/012075.
Azzahra, R. F., dan Taufik, M. 2020. Bio-adsorben berbahan dasar limbah ampas teh (Camellia Sinensis) sebagai agent penyerap logam berat Fe dan Pb pada air sungai. Jurnal Kinetika. 11: 65–70.
Batiancela, M. A., Acda, M. N., dan Cabangon, R. J. 2014. Particleboard from waste tea leaves and wood particles. Journal of Composite Materials. 48 (8): 911–916. https://doi.org/10.1177/0021998313480196.
Bergel, B. F., Araujo, L. L., dan Santana, R. M. C. 2021. Effects of the addition of cotton fibers and cotton microfibers on the structure and mechanical properties of starch foams made from potato starch. Carbohydrate Polymer Technologies and Applications. 2: 1-9. https://doi.org/10.1016/j.carpta.2021.100167.
Bodîrlău, R., Teacă, C.-A., dan Spiridon, I. 2014. Starch-cellulose composites. BioResources. 9 (1): 39-53.
Chaireh, S., Ngasatool, P., dan Kaewtatip, K. 2020. Novel composite foam made from starch and water hyacinth with beeswax coating for food packaging applications. International Journal of Biological Macromolecules. 165: 1382–1391. https://doi.org/10.1016/j.ijbiomac.2020.10.007.
Cruz-Tirado, J. P., Siche, R., Cabanillas, A., Díaz-Sánchez, L., Vejarano, R., dan Tapia-Blácido, D. R. 2017. Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Engineering. 20: 178–185. https://doi.org/10.1016/j.proeng.2017.07.026.
Debnath, B., Haldar, D., dan Purkait, M. K. 2021. Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environment Chemical Engineering. 9: 1-14. https://doi.org/10.1016/j.jece.2021.106179.
Dönmez Çavdar, A., Kalaycioǧlu, H., dan Mengeloǧlu, F. 2011. Tea mill waste fibers filled thermoplastic composites: The effects of plastic type and fiber loading. Journal of Reinforced Plastics and Composites. 30: 833–844. https://doi.org/10.1177/0731684411408752.
Duan, J., Reddy, K. O., Ashok, B., Cai, J., Zhang, L., dan Rajulu, A. V. 2016. Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. Journal of Environmental Chemical Engineering. 4: 440–448. https://doi.org/10.1016/j.jece.2015.11.029.
Dybka-Stępień, K., Antolak, H., Kmiotek, M., Piechota, D., dan Koziróg, A. 2021. Disposable food packaging and serving materials—trends and biodegradability. Polymers. 13(1306): 1-38. https://doi.org/10.3390/polym13203606.
Gao, P., dan Ogata, Y. 2020. CHAMU: An effective approach for improving the recycling of tea waste. IOP Conference Series: Materials Science and Engineering. 563: 1-9. https://doi.org/10.1088/1757-899X/711/1/012024.
Haris, N. I. N., Hassan, M. Z., Ilyas, R. A., Suhot, M. A., Sapuan, S. M., Dolah, R., Mohammad, R., dan Asyraf, M. R. M. 2022. Dynamic mechanical properties of natural fiber reinforced hybrid polymer composites: a review. Journal of Materials Research and Technology. 19: 167–182. https://doi.org/10.1016/j.jmrt.2022.04.155.
Hassan, M. M., Tucker, N., dan le Guen, M. J. 2020. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydrate Polymers. 230: 1-11. https://doi.org/10.1016/j.carbpol.2019.115675.
Hsieh, C. F., Liu, W., Whaley, J. K., dan Shi, Y. C. 2019. Structure, properties, and potential applications of waxy tapioca starches – A review. Trends in Food Science Technology. 83: 225-234. https://doi.org/10.1016/j.tifs.2018.11.022.
Ibrahim, M. M., Moustafa, H., el Rahman, E. N. A., Mehanny, S., Hemida, M. H., dan El-Kashif, E. 2020. Reinforcement of starch based biodegradable composite using Nile rose residues. Journal of Materials Research and Technology. 9: 6160–6171. https://doi.org/10.1016/j.jmrt.2020.04.018.
Ismail, I., Aini, Q., Jalil, Z., dan Fadzullah, S. H. S. M. 2020. Particle Size Effect on Mechanical and Physical Properties of Rice Straw Epoxy Resin Particleboard. International Journal on Advanced Science Engineering Information Technology. 10(3): 1221-1227.
Kaisangsri, N., Kowalski, R. J., Kerdchoechuen, O., Laohakunjit, N., dan Ganjyal, G. M. 2019. Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Industrial Crops & Products. 142: 1-8. https://doi.org/10.1016/j.indcrop.2019.111810.
Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., dan Yusof, F. A. M. 2022. Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties. Polymers. 14(514): 1-19. https://doi.org/10.3390/polym14030514.
Luna, P., Darniadi, S., Chatzifragkou, A., dan Charalampopoulos, D. 2021. Biodegradable foams based on extracted fractions from sorghum by-products. IOP Conference Series: Earth and Environmental Science. 79: 1-9. https://doi.org/10.1088/1755-1315/749/1/012057.
Mahmoud, D. A. R., Allam, M. A., dan Farag, M. M. 2020. Tea wastes as an alternative sustainable raw material for ethanol production. Egyptian Journal of Chemistry 63(7): 2683–2697. https://doi.org/10.21608/EJCHEM.2020.21785.2293.
Nugroho, A., Maharani, D.M., Legowo, A.C., Hadi, S., Purba, F., 2022. Enhanced mechanical and physical properties of starch foam from the combination of water hyacinth fiber (Eichhornia crassipes) and polyvinyl alcohol. Industrial Crops & Products. 183: 1-8. https://doi.org/10.1016/j.indcrop.2022.114936.
Oliveira, N. L., Rodrigues, A. A., Neves, I. C. O., Lago, A. M. T., Borges, S. V., dan de Resende, J. V. 2019. Development and characterization of biodegradable films based on Pereskia aculeata Miller mucilage. Industrial Crops & Products. 130: 499–510. https://doi.org/10.1016/j.indcrop.2019.01.014.
Onuoha, C., Onyemaobi, O. O., Anyakwo, C. N., dan Onuegbu, G. C. 2017. Effect Of Filler Loading And Particle Size On The Mechanical Properties Of Periwinkle Shell-Filled Recycled Polypropylene Composites. American Journal of Engineering Research 6(4): 72-79.
Qi, Z., Wang, B., Sun, C., Yang, M., Chen, X., Zheng, D., Yao, W., Chen, Y., Cheng, R., dan Zhang, Y. 2022. Comparison of Properties of Poly(Lactic Acid) Composites Prepared from Different Components of Corn Straw Fiber. International Journal of Molecular Sciences. 23(6746): 1-15. https://doi.org/10.3390/ijms23126746.
Rodrigues, N. H. P., de Souza, J. T., Rodrigues, R. L., Canteri, M. H. G., Tramontin, S. M. K., dan de Francisco, A. C. 2020. Starch-based foam packaging developed from a by-product of potato industrialization (Solanum tuberosum L.). Applied Sciences. 10(2235): 1-11. https://doi.org/10.3390/app10072235.
Román-Moreno, J. L., Radilla-Serrano, G. P., Flores-Castro, A., Berrios, J. D. J., Glenn, G., Salgado-Delgado, A., Palma-Rodríguez, H. M., dan Vargas-Torres, A. 2020. Effect of size and amount of sugarcane fibers on the properties of baked foams based on plantain flour. Heliyon. 6(9): 1-8. https://doi.org/10.1016/j.heliyon.2020.e04927.
Samal, S. 2020. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite. Powder Technology. 366; 43–51. https://doi.org/10.1016/j.powtec.2020.02.054.
Shrestha, S., Wang, B., Dutta, P. 2020. Nanoparticle processing: Understanding and controlling aggregation. Advance in Colloid and Interface Science. 279: 1-16. https://doi.org/10.1016/j.cis.2020.102162.
Shrivastava, A. 2018. Introduction to Plastics Engineering (1st ed). pp. 49–110. USA (+1): William Andrew Applied Science Publishers. https://doi.org/10.1016/b978-0-323-39500-7.00003-4.
Singh, P., dan Singh, B. 2019. Assessment of mechanical properties of biocomposite material by using sawdust and rice husk. INCAS Bulletin. 11(3): 147–156. https://doi.org/10.13111/2066-8201.2019.11.3.13.
Spada, J. C., Jasper, A., dan Tessaro, I. C. 2020. Biodegradable Cassava Starch Based Foams Using Rice Husk Waste as Macro Filler. Waste and Biomass Valorization. 11: 4315–4325. https://doi.org/10.1007/s12649-019-00776-w.
Versino, F., dan García, M. A. 2019. Particle Size Distribution Effect on Cassava Starch and Cassava Bagasse Biocomposites. ACS Sustainable Chem Eng. 7: 1052–1060. https://doi.org/10.1021/acssuschemeng.8b04700.
Zykova, A. K., Pantyukhov, P. V., Kolesnikova, N. N., Monakhova, T. V., dan Popov, A. A. 2018. Influence of Filler Particle Size on Physical Properties and Biodegradation of Biocomposites Based on Low-Density Polyethylene and Lignocellulosic Fillers. Journal of Polymers and the Environment. 26: 1343–1354. https://doi.org/10.1007/s10924-017-1039-9.
Refbacks
- Saat ini tidak ada refbacks.