Header Halaman

  • Beranda
  • Tentang Kami
  • Login
  • Daftar
  • Cari
  • Terkini
  • Arsip
  • Informasi
Beranda > Vol 24, No 2 (2020) > Harahap

 

Dewan Editorial

Mitra Bestari

Proses Peer Review 

Ruang Lingkup dan Fokus 

Etika Publikasi

Online Submission

Template

Pernyataan Open Access 

Biaya 

Panduan Penulis 

Penerbit 

TEMPLATE :

 

Kata Kunci DAS Air Dingin arabika gayo bakteri asam laktat bawang merah biji kopi cascara daging analog fermentasi gula isolat protein kedelai keuntungan mutu mutu tahu padang pengembangan penyimpanan produsen tahu pulp rantai pasok seduhan spasial stasiun Kernel Crushing Plant (KCP), Total Productive Maintenance (TPM)

PEMANFAATAN LINDI HITAM HASIL ISOLASI LIGNIN DARI TANDAN KOSONG KELAPA SAWIT SEBAGAI ANTI MIKROBA

Muhammad Ferdiansyah Mulya Harahap, Sri Hidayati, Subeki Subeki

Sari

Telah dilakukan isolasi lignin dari lindi hitam hasil proses pulping menggunakan metode formacell dari tandan kosong kelapa sawit.  Hasil monomer dari pemecahan lignin diduga memiliki senyawa yang bersifat anti mikroba.  Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi hasil pemecahan monomer lignin dengan perlakuan 0%, 2,5%, 5%, 7,5%, 10%, 12,5%, dan 15% terhadap daya hambat sebagai antimikroba. Hasil penelitian menunjukkan bahwa proses pemurnian menggunakan fraksi 3% MeOH:CHCl3 pada konsentrasi 12,5 dan 15% memiliki aktivitas antimikroba yang sama dan tertinggi terhadap E. coli dengan diameter zona hambat sebesar 6,33 mm, sedangkan aktivitas antimikroba terendah terhadap E. coli dimiliki fraksi 3% MeOH:CHCl3 pada konsentrasi 2,5% dengan diameter zona hambat sebesar 5,17 mm.

 Kata Kunci

antimikroba; isolasi; lignin; lindi hitam

 Teks Lengkap:

PDF (English)

Referensi

Alzagameem, A., Klein, S.E., Bergs, M., Do. X.T., Korte, I., Dohlen, S. ., , Cuwe, Kreyenschmidt, J Kamm, B., Larkins, M & Schulze, M.,. 2019. Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites against Selected Pathogenic and Spoilage Microorganism. Polymers (Basel). 11(4:. 670. doi: 10.3390/polym11040670

Alzagameem A., El Khaldi-Hansen B., Kamm B., Schulze M. 2018. Lignocellulosic Biomass For Energy, Biofuels, Biomaterials, and Chemicals. In: Vaz S. Jr., editor. Biomass and Green Chemistry. 1st ed. Springer International Publishing; Basel, Switzerland: 2018. pp. 95–132.

Agoramoorthy, G; Chandrasekaran, M; Venkatesalu, M & Hsu, M.J., 2007. Bacterial and Antifungal Activities Of Fatty Acid Methyl Esters Of The Blind-Your -Eye Mangrove From India. Brazilian Journal of Microbiology, 38: 739-742

Ayyachamy, M; Finola,E., Cliffe, Jessica, M., Coyne, John Collier, & Maria G. T., 2013. Lignin: Untapped Biopolymers In Biomass Conversion Technologies. Biomass Conversion and Biorefinery, 3 (3): 255.

Bakkali, F., Averbeck, S., Averbeck, D.,& Idaomar, M., 2008. Biological Effects of Essential Oils. Review. Food and Chemical Toxicology, 46: 446-475.

Bartolomeazzi, R., Senastianutto, N., Toniolo, R & Pizzariello, A., 2007. Comparative Evaluation of The Antuoxidant Capacity of Smoke Flavouring Phenols Bycrocin Bleaching Inhibition, DPPH Radical Scavenging and Oxidation Potential. Food Chemistry. 100: 1481 – 1489.

Baurhoo B, C.A., Ruiz-Feria, & Zhao, X., 2008. Purified Lignin: Nutritional and Health Impacts On Farm Animals. A review Animal Feed Science and Technology. 144: 175–184

Bonini, C., Auria, M; Emmanuel, L., Ferri, R., Pucciarello, R & Sabia, A.R., 2005. Polyutrethanes and Polyester from Lignin. J.Appl.Polym.Sci. 98 (3): 1451-1456.

Bozin, B., Mimica-Dukic, N., Simin, N., & Anackov, G., 2006. Characterization of The Volatile Composition of Essential Oils of Some Lamiaceae Spices and The Antimicrobial and Antioxidant Activities of The Entire Oils. J.Agric. Food Chem. 5: 1822–1828.

Darnoko. 1992. Potensi Pemanfaatan Limbah Lignoselulosa Kelapa Sawit melalui Biokonversi. Berita Penelitian Perkebunan. 2 (2): 85-87.

Doherty, W.O.S., Mousavioun, P & Fellows, C.M., 2011. Value-adding to Cellulosic Ethanol: Lignin Polymers. Industrial Crops and Products, 3: 259-276.

Gomez-Estaca, J., Montero, P., Gimenez, B. & Gomez-Guillen, M.C., 2007. Effect of Functional Edible Films and High Pressure Proccessing on Microbial and Oxidative Spoilage in Cold-Smoked Sardine (Sardina pilchardus). Food Chemistry. 105: 511-520.

Hidayati, S., Zuidar, S., & Fahreza, A. 2016. Optimasi Produksi Pulp Formacell dari Tandan Kosong Kelapa Sawit (TKKS) dengan Metode Permukaan Respon, Reaktor, 16(4):161-171.

Hidayati, S., Zuidar & Satyajaya. 2017. Effect of Acetic Acid: Formic Acid Ratio on Characteristics of Pulp From Oil Palm. ARPN Journal of Engineering and Applied Sciences. 12 (12): 3802-3807.

Hidayati, S., Zuidar, A.S., Satyajaya, W., Murhadi & Retnowati, D.,. 2018. Isolation and Characterization Of Formacell Lignins From Oil Empty Fruits Bunches. IOP Conf. Series: Materials Science and Engineering 344. 2018.

Hou, C, T., 2000. Biotransformation of Unsaturated Fatty Acids to Industrial Products. Advances in Applied Microbiology. 47:201-220

Kleinert, M & Barth, T., 200 8. Towards in Lignicellulosic Biorefinery: Direct One Step Conversion of Lignin to Hydrogen-Enriched Biofuel. Energy Fuels. 22 (2): 1371-1379.

Kaur, R., Uppal, S.K., & Sharma, P. 2017. Antioxidant and Antibacterial Activities of Sugarcane Bagasse Lignin and Chemically Modified Lignins. Sugar Tech. 19:.675–680. doi: 10.1007/s12355-017-0513-y.

Kristinsson, H.G., Danyali, N.,& Ua-Angkoon, S., 2007. Effect of Filtered Wood Smoked Treatment on Chemical and Microbial Chages in Mahi-mahi fillets. Journal of Food Science. 72:16-24.

Langner M. and Hui S.2000),Effect of Free Fatty Acids On The Permeability Of 1, 2-imyristoyl-Sn-Glycero-3-Phosphocholine Bilayer At The Main Phase Transition BBA-. Membranes,1463, 439-447.

Lee, K.W., Everts, H.,& Beynen, A.C., 2004. Essential oils in broiler nutrition. Inter. J. Poult. Sci. 3: 738–752.

Leroi, J.J.J., 2000. Salt and Smoke Simultaneously Effect Chemical and Sensory Quality of Cold-Smoked Salmon during 5o Celcius Storage Predicted using Factorial Design. Journal of Food Protection. 63: 1222-1227.

Lin, S. Y. & Dence, C.W., 1992. Methods in Lignin Chemistry. Berlin Heidelberg : Springer-Verlag.

Lupoi J.S., Singh, S., Parthasarathi R., Simmons B.A., & Henry R.J., 2015. Recent Innovations In Analytical Methods for The Qualitative and Quantitative Assessment of Lignin. Renew. Sustain. Energy. 4: 871–906. doi: 10.1016/j.rser.2015.04.091.

Milly, P.J., Toledo, R.T., & Ramakrishnan, S., 2005. Determination of Minimum Inhibitory Concentrations of Liquid Smoke Fractions. Journal of Food Science. 70: 12-17.

Mollahosseini, A., Rahimpour, A., Jahamshahi, M., Peyravi, M & Khavarpour, M., 2012. The Effect of Silver Nanoparticle Size on Performance and Antibacteriality of Polysulfone Ultrafiltration Membrane. Desalination, 30: 41-50.

Muratore G, & Licciardello, F., 2005. Effect of Vacuum and Modifed Atmosphere Packaging on the Shelf-lige Off Liquid-Smokeds Word Fish (Xiphiasgladius) slices. Journal of Food Science. 68: 1155-1160.

Phillip , L. E., Idziak, E. S. &. Kubow, S., 2000. The potential use of lignin in animal nutrition, and in modifying microbial ecology of the gut. Pages 1–9 in East. Nutr. Conf. Anim. Nutr. Assoc. of Canada, Montreal, Quebec, Canada.

Prayuwidayati, M., Sunarti., T. C., Sumardi, Subeki, & Wiryawan, K. G., K. G., 2016. Use of Lignin Formacell of Empty Bunch Palm Fiber as Feed Supplement and Prebiotics Candidate in Ruminant. Pakistan Journal of Nutrition, 15 (1): 58-65.

Roller, S., & Seedhar, P., 2002. Carvacrol and Cinnamic Acid Inhibit Microbial Growth in Fresh-Cut Melon and Kiwifruits at 4 ◦C and 8 ◦C. Lett. Appl. Microbiol. 35: 390–394.

Rovrik, L.M., 2000. Listeria Monocytogenes In The Smoked Salmon Industry. International Journal of Food Microbiology. 62: 183-190.

Sabu, T., Visakh, P.M. & Mathew, A.P., 2011. Advances in Natural Polymers:Composites and Nanocomposites. Springer, Dordrecht.

Saravanakumar, A., Venkateshwaran, K., Vanitha, J., Ganesh, M., Vasudevan, M., & Sivakumar, T., 2009. Evaluation of Antibacterial Activity Phenol and Flavonoid Contents of The Spesia Populnae Flower Extracts. Pakistan Journal of Phamaceutical Science, 22: 282-286.

Skandamis, P.N., & Nychas, G., 2001. Effect of Oregano Essential Oil on Microbiological and Physio-Chemical Attributes of Minced Meat Stored in Air And Modified Atmospheres. J. Appl. Microbiol. 9: 1011–1022.

Smith-Palmer, A., Stewart, J., & Fyfe, L., 2001. The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol. 18: 463–470.

Smid, E.J., Hendriks, I., Boerrigter, H.A.M., & Gorris, L.G.M., 1996. Surface Disinfection of Tomatoes Using The Natural Plant Compound Trans-Cinnamaldehyde. Postharvest Biol. Tech. 9: 343–350.

Sriroth & Sunthornvarabhas. 2018, Lignin from Sugar Process as Natural Antimicrobial Agent. Biochem Pharmacol. 7 (1): 1-4.

Soldera, S., Sebastianutto, N., & Bortolomeazzi, R., 2008. Composition of Phenolic Compounds and Antioxidant Activity of Commercial Aqueois Smoke Flavorings. Journal of Africulture and Food Chemistry. 56: 2727-2734.

Sunen, E., Aristimuni, C., & Fernandez-Galian, B., 2003. Activity of Smoke Wood Condesates against Aeromonas hydrophila and Listeria monocytigenesin vacuum-packed, Cold-Smoked Rainbow Trout Storedat 4oC. Food Research International. 36: 111-116.

Sunen, E., Fernandez-Galian, B., & Arustumuno, C., 2001. Antibacterial Activity of Smoke Wood Condesates Againts Aeromonas Hydrophila, Yersinia Enterolitica an Listeria Monocytiogenes at Low Temperature. Food Microbilogy. 18: 387-383.

Suzuki, K., Nakano, N., Tanaka, R., Uyeda, M., & Shibata, M., 1988. Cell Aggregation Factor Produced by Streptomyces sp. Strain No. A-3315. Agricultural and Biological Chemistry. 52(10): 2589-2595

Ultee, A., Slump, R.A., Steging, G., & Smid, E.J., 2000. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 63: 620–624.

Xu, F., Sun, J., Sun, R., Fowler, P., & Baird, M.S., 2006. Comparative Study of Organosolve Lignin From Wheat Straw. Ind. Crops Product. 23 (2): 180-193.

Yang W., Fortunati E., Dominici F., Kenny J.M., Giovanale G., Mazzaglia A., Balestra G.M., & Puglia, D., 2016. Effect of Cellulose and Lignin on Disintegration, Antimicrobial and Antioxidant Properties Of PLA Active Films. Int. J. Biol. Macromol. 89: 360–368. doi: 10.1016/j.ijbiomac.2016.04.068.

DOI: https://doi.org/10.25077/jtpa.24.2.122-128.2020

Refbacks

  • Saat ini tidak ada refbacks.

TPA indexed by:


 

SUPERVISED BY :

TOOLS :

Statistik Pengunjung

free
web stats

 

ISSN

2579-4019 (ONLINE)

1410-1920 (CETAK)

Pengguna
Notifikasi
  • Lihat
  • Langganan
Bahasa
Isi Jurnal

Telusuri
  • Berdasarkan Terbitan
  • Berdasarkan Penulis
  • Berdasarkan Judul
Ukuran Huruf

Informasi
  • Untuk Pembaca
  • Untuk Penulis
  • Untuk Pustakawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Penerbit : Fakultas Teknologi Pertanian Univeritas Andalas