PENGENDALIAN BANJIR KOTA PADANG MENGGUNAKAN METODE ZERO RUN OFF SYSTEM (STUDI KASUS DAS KURANJI)

Hendri Gustian¹, Feri Arlius², Rusnam², dan Eri Gas Ekaputra²

¹Mahasiswa Program Magister Teknik Pertanian, Universitas Andalas ²Dosen Fakultas Teknologi Pertanian, Universitas Andalas Email: hendrigustian63@gmail.com

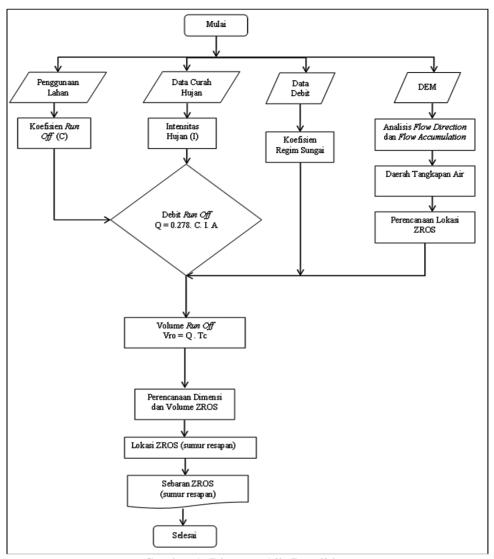
ABSTRAK

Banjir pada umumnya terjadi akibat faktor alam seperti intensitas hujan yang tinggi dan kerusakan DAS akibat penggunaan lahan yang tidak menerapkan kaidah-kaidah konservasi. Kota Padang merupakan daerah rawan banjir di Provinsi Sumatera Barat, yang disebabkan oleh intensitas hujan yang tinggi dengan durasi waktu yang lama. Pengendalian banjir tidak bisa terlepas dari pentingya pengelolaan DAS. Melalui penerapan metode *Zero Run Off System* (ZROS) yang dapat meminimalkan aliran permukaan (*run-off*) dan meningkatkan penyerapan air. Sumur resapan salah satu yang direkomendasikan pada bagian hilir DAS Kuranji. Jumlah sumur resapan yang dibutuhkan adalah sebanyak 12.244 unit untuk periode ulang curah hujan 2 tahun dan 16.864 unit untuk periode ulang curah hujan 50 tahun.

Kata Kunci- banjir, DAS kuranji, run-off, zero run off system

PENDAHULUAN

Daerah Aliran Sungai (DAS) memiliki peran penting karena berfungsi sebagai perlindungan terhadap seluruh bagian DAS. Aliran permukaan merupakan salah satu faktor penyebab terjadi banjir akibat jumlah curah hujan yang jatuh dipermukaan tanah melampaui kapasitas infiltrasi. Kota Padang merupakan salah satu daerah rawan banjir yang disebabkan oleh intensitas hujan yang tinggi dengan durasi waktu yang lama. Menurut Badan Penanggulangan Bencana Daerah (BPBD) Provinsi Sumatera Barat tahun 2018 mencatat sebanyak 33 kali telah terjadi banjir di Kota Padang dalam jangka waktu 10 tahun terakhir. Daerah Aliran Sungai (DAS) Kuranji merupakan DAS terbesar diantara enam DAS di Kota Padang dengan debit dan volume aliran permukaan yang besar pada saat musim hujan mengakibatkan langsung menggenangi sebagian besar daerah bagian hilir DAS Kuranji.


Parameter yang menyebabkan terjadinya banjir adalah kelerengan yang curam, alih fungsi lahan, sistem drainase tidak memadai, pengundulan hutan di daerah hulu, dan terbatasnya upaya pemeliharaan (Berd, 2017). Banyak upaya yang telah dilakukan pemerintah dengan tujuan untuk pengendalian banjir. Salah satu contohnya adalah pembangunan cekdam di kawasan hulu DAS Kuranji namun hingga saat ini belum maksimal karena memerlukan biaya yang besar dan waktu pengerjaan yang lama.

Salah satu upaya konkrit yang dapat dilakukan untuk pengendalian banjir adalah melalui penerapan metode *Zero Run Off System* (ZROS). Metode *Zero Run Off System* (ZROS) merupakan teknik meminimalkan aliran permukaan (*run-off*) yang terjadi pada musim hujan, sehingga pada suatu wilayah tidak menghasilkan aliran permukaan (Ekaputra, 2014). Contoh bangunan yang menerapkan metode ZROS adalah sumur resapan. Sumur resapan berupa prasarana yang berfungsi untuk menampung aliran permukaan dan menyimpannya ke dalam tanah melalui infiltrasi dan perkolasi (Kusnaedi, 2006). Bentuk sumur resapan adalah berbentuk persegi atau silinder (BSN, 2002).

METODOLOGI PENELITIAN

Penelitian ini dilakukan pada kawasan DAS Kuranji Kota Padang yang dilaksanakan pada bulan Juli 2019 – bulan September 2019. Alat yang digunakan dalam penelitian ini adalah seperangkat komputer untuk menjalankan program *ArcGIS 10.4.*1, *Global Positioning System* (GPS), seperangkat alat tulis dan kamera digital. Tahap awal penelitian ini adalah pengumpulan data, adapun data yang dibutuhkan yaitu: data debit tahunan 10 tahun terakhir, data *Digital Elevation Model* (DEM), data iklim, peta jenis tanah, dan peta penggunaan lahan DAS Kuranji. Diagram alir penelitian dapat dilihat pada Gambar 1.

Gambar 1. Diagram Alir Penelitian

A. Analisis Debit Aliran Permukaan

Analisis debit aliran permukaan dilakukan dengan menggunakan persamaan rasional yang bertujuan untuk merancang bangunan pengendalian banjir (Asdak, 2014) dengan persamaan matematis sebagai berikut:

Q = 0,278 . C. I. A(1) keterangan:

Q = Debit aliran permukaan $(m^3/detik)$

C = Koefisien aliran permukaan

I = Intensitas curah hujan (mm/jam)

A = Luas daerah tangkapan air (km^2)

B. Analisis Volume Aliran Permukaan

Analisis volume aliran permukaan bertujuan untuk mengetahui banyaknya jumlah sumur resapan yang dibutuhkan. Persamaan yang digunakan untuk menghitung volume aliran permukaan sebagai berikut:

 $Vr = Q \cdot Tc$ (2)

keterangan:

Vr = Volume aliran permukaan (m³)

Q = Debit aliran permukaan (m³/detik)

Tc = Waktu konsentrasi (jam)

Waktu konsentrasi (Tc) dapat dihitung dengan persamaan Kirpich (1940) sebagai berikut:

$$Tc = \frac{(0.87 \, x \, L)^2}{(1000 \, X \, S)^{0.385}} \tag{3}$$

keterangan:

Tc = Waktu konsentrasi (jam)

L = Panjang alur sungai (km)

S = Kemiringan rata-rata sungai

C. Analisis Volume Sumur Resapan

Bentuk sumur resapan yang digunakan dalam penelitian adalah berbentuk persegi, dan untuk menghitung volumenya digunakan persamaannya sebagai berikut:

$$Vsr = S \times S \times T$$
(4) keterangan:

Vsr = Volume sumur serapan (m³)

S = Sisi sumur resapan (m)

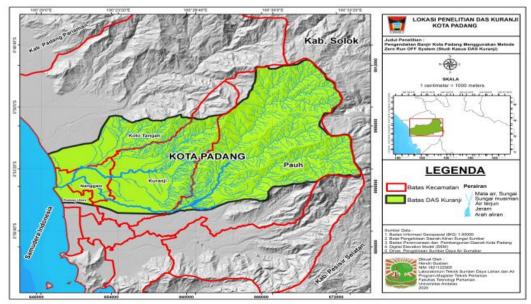
T = Kedalaman sumur resapan (m)

Persamaan yang digunakan untuk mencari jumlah sumur resapan sebagai berikut:

$$Jsr = \frac{Vr}{Vsr} \tag{5}$$

Keterangan:

Jsr = Jumlah sumur resapan (unit)


Vr = Volume aliran permukaan (m³)

Vsr = Volume sumur resapan (m³)

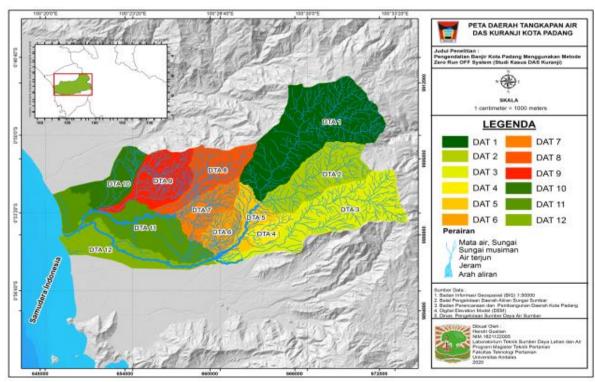
HASIL DAN PEMBAHASAN

A. Gambaran Umum DAS Kuranji

Secara geografis DAS Kuranji terletak pada $100^{\circ}21'0'' - 100^{\circ}33'0''$ Bujur Timur dan $0^{\circ}56'40'' - 0^{\circ}40'0''$ Lintang Selatan dengan luas 215,615 km² (Gambar 2). Panjang sungai keseluruhan (sungai utama dan anak-anak sungai) DAS Kuranji adalah 274,750 km dengan panjang sungai utama 32,410 km. Topografi DAS Kuranji pada bagian hulu bergunung dan berbukit, pada bagian tengah dan hilir DAS tampak landai dan datar. Pola drainase DAS Kuranji termasuk dalam tipe dendritik. DAS Kuranji memiliki tingkat kelerengan yang beragam yaitu datar, landai, agak curam, curam sangat curam. Jenis tanah DAS Kuranji menurut Badan Perencanaan dan Pembangunan Daerah (BAPPEDA) Kota Padang memiliki lima jenis tanah yaitu: latosol, aluvial, andosol, organosol, dan regosol.

Gambar 2. Peta Lokasi Penelitian DAS Kuranji Sumber: Badan Perencanaan Pembangunan Daerah Kota Padang (2018)

B. Analisis Debit Aliran Permukaan


Penggunaan metode rasional direkomendasikan untuk DAS berukuran kecil, namun untuk DAS berukuran yang lebih luas maka perlu dibagi menjadi beberapa DTA (sub-DAS). Metode ini terbuki paling praktis dalam menduga debit dan volume aliran permukaan yang bertujuan untuk merancang bangunan pengendalian banjir (Asdak, 2014).

Tabel 1. Debit Aliran Permukaan DAS Kuranji (m³/detik)

Tuest 1. Desit i initan i simakaan Di is itaranji (in / asin)									
DTA	Periode Ulang (Tahun)								
	1	2	5	10	25	50	100		
DTA 1	59,216	97,647	112,703	120,668	129,110	134,500	139,276		
DTA 2	36,989	60,996	70,400	75,376	80,649	84,016	86,999		
DTA 3	32,676	53,884	62,192	66,588	71,246	74,221	76,856		
DTA 4	11,897	19,618	22,643	24,243	25,939	27,022	27,981		
DTA 5	10,458	17,245	19,904	21,311	22,802	23,754	24,597		
DTA 6	14,487	23,889	27,573	29,522	31,587	32,906	34,074		
DTA 7	13,962	23,023	26,573	28,451	30,441	31,712	32,838		
DTA 8	21,553	35,541	41,021	43,920	46,993	48,955	50,693		
DTA 9	10,329	17,033	19,659	21,048	22,521	23,461	24,294		
DTA 10	8,583	14,079	16,250	17,398	18,615	19,392	20,081		
DTA 11	17,860	29,452	33,993	36,396	38,942	40,568	42,008		
DTA 12	10,690	17,628	20,346	21,784	23,307	24,281	25,143		
Total	248,653	410,036	473,256	506,705	542,153	564,788	584,841		

Sumber: Hasil Analisis (2019)

Kawasan bagian hulu DAS Kuranji menghasilkan debit aliran permukaan yang cukup besar pada saat musim hujan, dengan tingkat kelerengan yang sangat curam. Kondisi mengakibatkan potensi banjir pada bagian hilir DAS Kuranji cukup besar karena pada saat musim hujan air terakumulasi pada bagian hilir (Gambar 3).

Gambar 3. Peta Daerah Tangkapan Air DAS Kuranji Sumber: Hasil Analisis (2019)

C. Analisis Volume Aliran Permukaan

Pada musim hujan dengan intensitas yang tinggi kapasitas infiltrasi akan terlampaui dengan beda yang cukup besar dibandingkan dengan hujan yang kurang intensif, sehingga total volume aliran permukaan akan lebih besar pada saat hujan intensif, karena hujan dengan intensitas hujan yang tinggi dapat menurunkan kemampuan infiltrasi (Asdak, 2014). Luas DTA berbanding lurus dengan volume aliran permukaan, semakin luas DTA semakin besar volume aliran permukaan. Volume aliran permukaan yang besar pada bagian hulu DAS Kuranji dengan kelerengan yang sangat curam mengakibatkan potensi banjir pada bagian hilir DAS Kuranji. Hal ini dikarenakan kawasan bagian hilir DAS Kuranji tersebut merupakan kawasan padat pemukiman dan daerah resapan air yang kecil, sehingga perlu upaya pembuatan sumur resapan untuk meminalkan aliran permukaan.

Tabel 2. Volume Aliran Permukaan DAS Kuranji (m³)

DTA	Periode Ulang (Tahun)								
	1	2	5	10	25	50	100		
DTA 1	233.826	385.585	445.035	476.490	509.824	531.109	549.966		
DTA 2	90.055	148.503	171.399	183.514	196.325	204.549	211.812		
DTA 3	177.785	293.172	338.375	362.375	387.635	403.819	418.157		
DTA 4	16.656	27.467	31.702	33.942	36.317	37.833	39.176		
DTA 5	41.494	68.424	78.974	84.556	90.471	94.248	97.595		
DTA 6	26.346	43.445	50.143	53.687	57.443	59.841	61.966		
DTA 7	54.499	89.871	103.727	111.058	118.828	123.789	128.184		
DTA 8	67.489	111.291	128.450	137.529	147.150	153.294	158.736		
DTA 9	117.599	193.924	223.824	239.644	256.408	267.114	276.597		
DTA 10	73.965	121.971	140.777	150.726	161.271	168.004	173.969		
DTA 11	181.152	298.724	344.782	369.151	394.976	411.466	426.075		
DTA 12	113.973	187.944	216.922	232.253	248.501	258.876	268.068		
Total	1.194.839	1.970.321	2.274.110	2.434.925	2.605.149	2.713.942	2.810.301		

Sumber: Hasil Analisis (2019)

D. Volume Sumur Resapan

Dimensi sumur resapan yang digunakan adalah berbentuk persegi dengan ukuran 3 m x 3 m x 5 m berdasarkan (SNI) 03-2453-2002 (BSN, 2002). Sehingga setiap sumur resapan mampu menampung aliran permukaan sebanyak 45 m³. Volume aliran permukaan dipengaruhi oleh laju infiltrasi. Berdasarkan penelitian Uthami (2017) laju infiltrasi DAS Kuranji 21,81 mm/jam (4,711 m³/hari). sehingga jika dijumlahkan antara laju infiltrasi dan volume tampung sumur resapan maka daya tampung sumur resapan untuk mengurangi aliran permukaan menjadi semakin besar yaitu 49,771 m³/hari.

Jumlah sumur resapan setiap DTA berbeda-beda, hal ini dipengaruhi oleh luas, debit dan volume aliran permukaan setiap DTA. Jumlah sumur resapan berbanding lurus dengan potensi aliran permukaan, semakin besar potensi aliran permukaan maka semakin banyak sumur resapan yang dibutuhkan. Pembangunan sumur resapan direkomendasikan pada daerah yang datar atau landai sehingga air yang mengalir dari daerah tinggi masuk ke sumur resapan secara optimal.

Sumur resapan dibangun pada DTA yang berpotensi terjadi banjir sejalan dengan pola drainase DAS Kuranji yang bertipe dendritik dimana potensi terjadinya banjir pada bagian hilir DAS. Oleh karena itu pembangunan sumur resapan direkomendasikan bagian hilir DAS Kuranji yang terdiri dari DTA 10 (sub-DAS Lubuk Gajah), DTA 11 (sub-DAS Sungai Sapih) dan DTA 12 (sub-DAS Kuranji Hilir). Sumur resapan yang dibutuhkan untuk mengurangi aliran permukaan pada bagian hilir DAS Kuranji adalah sebanyak 12.244 unit untuk periode ulang curah hujan 2 tahun dan 16.864 unit untuk periode ulang curah hujan 50 tahun.

KESIMPULAN

Sumur resapan direkomendasikan untuk pengendalian banjir pada bagian hilir DAS Kuranji dengan jumlah 12.244 unit untuk periode ulang curah hujan 2 tahun dan 16.864 unit untuk periode ulang curah hujan 50 tahun.

DAFTAR PUSTAKA

- Asdak, C. 2014. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta: Gadjah Mada University Press.
- Berd, I. 2017. Kajian Morphometri Pada Daerah Aliran Sungai (DAS) Batang Kuranji Terhadap Debit Banjir. Padang: Universitas Andalas.
- [BPBD] Badan Penanggulangan Bencana Daerah. 2018. Tren Kejadian Bencana Kota Padang. Sumatera Barat: Padang.
- [BSN] Badan Standardisasi Nasional. 2002. Tata Cara Perencanaan Teknik Sumur Resapan Air Hujan untuk Pekarangan. Jakarta.
- Ekaputra, Eri Gas. 2014. Aplikasi *Zero Run Off* di Lahan Perkebunan Sawit Dalam Upaya Konservasi Sumber Daya Air. Padang: Universitas Andalas.
- Kirpich, T.P. 1940. Time of Concentration of Small Agricultural Watersheed. Civil Engineering. 10(6), 362
- Kusnaedi. 2006. Sumur Resapan untuk Pemukiman Perkotaan dan Pedesaan. Jakarta: Penebar Swadaya.
- Uthami. F.R. Analisis Spasial Kemampuan Infiltrasi Tanah DAS Kuranji. [Skripsi]. Fakultas Teknologi Pertanian. Padang: Universitas Andalas.